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Abstract: This feature issue commemorating 25 years of STED microscopy and 20 years of
SIM is intended to highlight the incredible progress and growth in the field of superresolution
microscopy since Stefan Hell and Jan Wichmann published the article Breaking the diffraction
resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy
in Optics Letters in 1994.
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This feature issue commemorating 25 years of STED microscopy and 20 years of SIM is intended
to highlight the incredible progress and growth in the field of superresolution microscopy since
Stefan Hell and Jan Wichmann published the article Breaking the diffraction resolution limit by
stimulated emission: stimulated-emission-depletion fluorescence microscopy in Optics Letters
in 1994 [1]. Only a few years after that, Tony Wilson’s group published the first paper to use
structured illumination for optical sectioning [2]. And in 1998, Rainer Heintzmann and Christoph
Cremer presented their idea for using laterally modulated excitation to improve resolution in
fluorescence microscopy. The next year, the conference proceeding was published [3], and, the
year after that Mats Gustafsson demonstrated a factor of two resolution improvement, referring to
“structured illumination microscopy” (SIM) for the first time [4].

Since the first paper, STED has been improved and refined. The first STED paper has now
been cited 2,849 times, and last year 314 papers were published on STED. STED microscopy has
now been commercialized and is used not only for live cell superresolution imaging [5], but also
for novel applications such as laser lithography [6]. Rather than use stimulated emission to turn
off fluorescence, RESOLFT takes advantage of reversibly photoswitchable fluorescent proteins,
extending the STED concept to lower light levels more amenable to live cell imaging [7]. STED
has also been massively parallelized to make live imaging over large fields of view possible
[8]. STED has been combined with adaptive optics [9,10] and light sheet imaging [11]. STED
microscopy has enabled video rate imaging of the synapse [12] and live imaging in mouse brains
at better than 70 nm resolution [13]. In this issue, we have an invited paper on the modelling
and characterization of RESOLFT imaging and resolution [14], and Hernandez et al. discuss an
improved approach to combining STED with light-sheet microscopy [15].
Mats Gustafsson’s original SIM paper has been cited 1,541 times. Last year, 303 papers

were published in OSA journals referring to structured illumination microscopy techniques.
There are now several successful commercial SIM instruments. After the initial work on 2D
SIM, the technique was extended to three-dimensions [16], live imaging [17–19], and even
higher resolution [20,21]. Mats Gustafsson developed a multifocal widefield microscope, and
this technique has been combined with SIM [22]. The Lattice Light Sheet Microscope is a
highly successful combination of SIM with light sheet imaging [23]. SIM has been combined
with Adaptive Optics [24–26], and SIM concepts have been applied to phase imaging and to
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fluorescence imaging with speckle illumination instead of conventional structured illumination
patterns [27–29]. SIM has been used to image the nuclear pore complex [30], the synaptonemal
complex [31], and live cytoskeletal dynamics [19,32]. In this issue, James Manton et al. present
a novel concept for increasing axial resolution in SIM [33].

In 2006, PALM [34], FPALM [35], and STORM [36] were introduced. These papers have now
been cited collectively over 10,000 times. These techniques spawned a plethora of acronyms
and are now frequently but not always collectively referred to as single molecule localization
microscopy (SMLM). SMLM has been used to study the cytoskeletal structure of the axon
[37], the spatial organization of chromosomes [38], the structure of bacteria [39]. SMLM
techniques have become increasingly sophisticated. Multi-emitter fitting now enables faster
imaging with higher labeling densities [40], and single-particle reconstruction allows the structure
of molecular machinery to be determined from 1000s of SMLM images [41,42]. SMLM has
been optimized and extended in a multitude of ways including extending the axial range with PSF
engineering [43,44], PSF engineering for multicolor imaging [45,46], optimizing blinking rates
[47], light sheet illumination to reduce background [48,49], doughnut spot based triangulation for
increased precision with minimal photon flux [50], and increasing the resolution with structured
illumination [51,52]. Deep learning has become an important tool in superresolution microscopy,
and there are several papers on the use of deep learning in SMLM [53,54]. In an invited article
in this issue, deep learning is reviewed by Möckl et al. [33]. Along with these new developments
in superresolution microscopy have come important and necessary developments in image
evaluation as well. With the rise of superresolution microscopy, it has become increasingly
important to quantify the resolution of an image in an objective manner, and Fourier Ring
Correlation has become the accepted standard for this [55].
In this collection there are 4 articles on SMLM. Philipp Zelger et al. describe a new method

for axial localization [56]. Sha An et al. discuss a method for SMLM along axial cross-sections
[57]. Arne Bechensteen et al. write on a new algorithm for single molecule localization [58],
and Marijn Siemons et al. look at astigmatism based localization [59].

Other forms of superresolution microscopy have been developed as well including SOFI [60]
and MUSICAL [61]. We have papers on MUSICAL by Sebastian Acuna et al. [62] and papers
on SOFI by Benjamien Moeyaert et al. [63] and Xiyu Yi and Shimon Weiss [64]. A paper on
resolution beyond the diffraction limit using deep learning in infrared spectroscopy by Kianoush
Falahkheirkhah et al. [65], and on a cost-efficient laser source for superresolution microscopy by
Daniel Schröder et al. [66] round out the collection.
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